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Abstract

The present study reports empirical evidence for periodic orga-
nization of very large-scale motions (also known as superstruc-
tures), along the spanwise direction, in a zero pressure gradient
turbulent boundary layer. This is made possible by perform-
ing a scale-specific coherence analysis on datasets comprising
streamwise velocity fluctuations, synchronously measured at
multiple locations across large spanwise and wall-normal sepa-
rations within the shear flow. Datasets considered include pub-
lished low-Reτ direct numerical simulation and high-Reτ exper-
imental datasets across a friction Reynolds number range, Reτ

∼ O(103) – O(104). The present analysis supports the notion on
the superstructures being formed via the streamwise concatena-
tion of relatively smaller motions. The latter are found to exhibit
geometric self-similarity over a range of scales, up to a charac-
teristic spanwise width equivalent to that of the superstructures,
which scales in outer-units.
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Introduction

Since the discovery of ‘coherent’ structures in a wall-bounded
turbulent shear flow, a significant number of studies have been
conducted to understand the mechanism associated with their
formation and organization [13]. One of the earliest efforts in
this respect was the seminal work of Kline et al. [7], who ob-
served the near-wall streaky structures to be organized along
the spanwise direction, at a characteristic viscous-scaled wave-
length of 100, which is common to all three canonical wall-
bounded turbulent flows [11] – the zero pressure gradient tur-
bulent boundary layer (ZPG TBL), the fully developed turbu-
lent channel and pipe flow. Studies conducted over the past two
decades [14, 3] have reported a similar organization even for the
energetic large coherent structures existing in the outer region
of the wall-bounded flow, albeit at much larger spacings. The
existence of such an ‘order within chaos’ is particularly exciting
from the perspective of developing conceptual models for these
complex flows (for example, the attached eddy model based on
the attached eddy hypothesis (AEH) of [15]).The present study
investigates the organization as well as the geometric charac-
teristics of the energetic motions in a ZPG TBL, in the hope to
facilitate the AEH-based modelling for this flow type [9].

Recent modelling efforts have primarily concentrated on the
logarithmic (log) region of a wall-bounded shear flow [9],
which comprises a major proportion of the turbulence pro-
duction at practically relevant Reynolds numbers [13]. This
region is predominated by the so-called large-scale motions
(LSMs;[13]) and very-large-scale motions or superstructures
(SS;[6, 11]) carrying streamwise (u) momentum, which to-
gether constitute a significant portion of the Reynolds shear
stress and turbulent kinetic energy [13] of the flow, making them
the primary focus of this study. The LSMs correspond to u-
motions with streamwise (x) lengths of the order of 2-3δ, and
are induced by hairpin packets formed via coalescence of multi-
ple hairpin vortices along x [13]. δ, here, refers to the boundary
layer thickness of a ZPG TBL. Recent direct numerical simu-

lations (DNS) have revealed via space-time analysis [8, 2] that
it is these LSMs which concatenate along the streamwise direc-
tion to form the SS, an idea earlier hypothesized by [14]. The SS
correspond to spanwise-alternatively arranged very long struc-
tures (> 20δ) of low (−u) and high (+u) momentum [6, 11],
extending down to the wall (i.e. they are wall-coherent [4]),
subsequently influencing the near-wall dynamics via superposi-
tion and modulation [6, 10]. While their spanwise periodicity
has been noted previously via Fourier analysis [14, 3], these es-
timates should however, be treated with caution given that the
associated wavelengths essentially correspond to Fourier wave-
lengths [2], which inherently assumes periodicity along the con-
cerned direction.

Consequently, here we re-investigate published datasets, span-
ning across a decade of Reτ, to look for a direct evidence of the
periodic organization of the SS along the spanwise direction.
To this end, experimental and numerical datasets comprising
multi-point u-fluctuations measured synchronously across large
spanwise (∆y) and wall-normal (∆z = zo - zr) spacings are con-
sidered to compute the scale-specific u-coherence over space
and/or time. The unique aspect of the present analysis is the
consideration of one of the reference u-velocity signals (to in-
vestigate coherence) from the near-wall region, which ensures
that the estimates are solely influenced by the wall-coherent mo-
tions [4, 5]. Given that the SS are formed via concatenation of
the LSMs [8, 2], the present analysis also facilitates investiga-
tion of these relatively smaller wall-coherent motions acting as
the constituent elements for the former. The associated findings
would be useful to model the SS, while developing the frame-
work of an AEH-based conceptual model for the ZPG TBL flow
[9]. Throughout this article, superscript ‘+’ indicates normal-
ization by viscous length (ν/Uτ) and velocity (Uτ) scales, the
latter defined mathematically by Uτ = ( τw

ρ
)1/2, with τw and ρ

the mean wall-shear stress and fluid density, respectively.

Experimental and numerical data

The flow organization is investigated by conducting a coher-
ence analysis on published datasets ([12, 4]; table 1) ranging
over a decade of friction Reynolds number, Reτ ∼ O(103) –
O(104). Here, Reτ = Uτδ/ν, which is the ratio of the inner
and outer length scales of the wall-bounded flow. The exper-
imental dataset essentially comprises of the time series of the
u-fluctuations (with the mean subtracted from the instantaneous
signal) synchronously acquired via hotwire anemometry at mul-
tiple locations across the shear flow, specific details of which
are given in table 1. The dataset is obtained from one of the
largest state-of-the-art facilities available for investigating the
ZPG TBL – the Melbourne High Reynolds Number Boundary
Layer Wind Tunnel (HRNBLWT) facility at the University of
Melbourne. The facility is designed on the ‘big and slow’ ap-
proach, i.e. it allows the TBL to grow along the streamwise
direction (x), producing a high Reynolds number flow which is
physically thick (meaning a large δ) while keeping the smallest
energetic viscous scale within O(10 µm). This permits acces-
sibility to the near-wall region of the high Reynolds number
flows, which scales in viscous units, while also ensuring that
the entire spectrum of the energetic scales can be resolved by



Study Deshpande et al. [4] Sillero et al. [12]
Facility HRNBLWT (Exp) DNS
Reτ ≈ 14 000 2 000

Sensor ref. z+o z+r z+o z+r
Location 2.6

√
Reτ ≈ z+o 2.6

√
Reτ = z+o

Location 2.6
√

Reτ, 0.15Reτ 15 2.6
√

Reτ 15

l+ ≈ 22 22 3.7 3.7
∆s/δ ≈ 0.0 - 2.5 – 0.0 - 2.5 –

Table 1. A summary of the data sets containing synchronized multipoint
u-measurements at z+r and z+o , which are separated by various spanwise
offsets, ∆s. l+ represents the spatial resolution of the sensor/grid along
the spanwise direction. z+o ≈ 2.6

√
Reτ and 0.15Reτ corresponds to the

lower and upper bound of the log-region, respectively [4].

conventional hotwire sensors.

In HRNBLWT, the TBL is allowed to develop over a very long
flat plate from the start of the test section (x = 0), with the multi-
point hotwire measurements conducted at x ≈ 20 m, where δ

≈ 0.36 m. To facilitate the study of the spanwise organization
of the energetic wall-coherent motions, u-fluctuations were ac-
quired simultaneously at locations in the near-wall (z+r ≈ 15)
as well as at the start of the log-region (z+o ≈ 2.6

√
Reτ). These

two probes were separated by a spanwise offset ∆s, which was
varied by physically traversing the probe at zo (along the span
y) for every measurement while keeping the other probe (at zr)
fixed. Figure 1(a) schematically depicts this probe arrangement.
The same experiment was also conducted to investigate the tall
wall-coherent motions extending up to the upper bound of the
log-region, by choosing z+o ≈ 0.15Reτ, the schematic for which
has been given in figure 1(b). The cumulative observations from
these two measurements, thus, can be deemed representative of
the flow phenomena in the entire log-region.

Apart from the arrangement where z+o 6= z+r ≈ 15 (table1), a
similar two-point measurement but with z+o ≈ z+r ≈ 2.6

√
Reτ

was also conducted to estimate the u-coherence influenced by
all motions coexisting at zo, to compare with the former ex-
periment. Full details of the setup as well as the methodology
adopted to conduct both these measurements can be found in
[4]. Apart from these experimental data, a low Reτ dataset of
Sillero et al. [12] is also selected from their published DNS
database for a ZPG TBL. Thirteen raw DNS volumes, compris-
ing instantaneous streamwise velocity fluctuations, are consid-
ered in total to investigate the large-scale coherence. Sensor
locations, z+o and z+r for this dataset were selected to be com-
patible with the experimental dataset and have been specified in
table 1.

Results

Here, the spatial coherence of the u-motions is quantified by
computing the scale-specific coherence function [1], Γ:

Γ(zo,zr,∆s;λx) =
Re[〈ũ(zo,∆s;λx)ũ∗(zr;λx)〉]√
〈| ũ(zo,∆s;λx) |2〉

√
〈| ũ(zr;λx) |2〉

, (1)

where ũ(zo,∆s;λx) indicates the Fourier transform of u(zo,∆s)
in either time or x, depending on the data set. Here, λx is
the streamwise wavelength and is equal to 2π/kx, with kx the
streamwise wavenumber. The asterisk (∗), angle brackets (〈〉)
and vertical bars (||) indicate the complex conjugate, ensemble
averaging in time and modulus, respectively while Re denotes

the real component. It is noted, that by definition -1 ≤ Γ ≤
1, with +1 and −1 representing perfect correlation and anti-
correlation respectively, analogous to the correlation coefficient
which has been widely used in the literature [6, 11] to study
spatial coherence. The present study, however, uses Γ as the
preferred metric since it allows contributions from the small and
large motions to be compared individually, yielding information
which is otherwise lost due to ensemble averaging in case of the
correlations [1, 5]. It can be noted that, when z+r ≈ 15, Γ would
be solely influenced by the wall-coherent motions [5, 4] at zo,
which is of primary interest to us in this study.

In the case of the experimental dataset, which is limited only
to having the u-time series at various ∆s, the streamwise co-
herence in equation 1 is obtained by using the Taylor’s frozen
turbulence hypothesis, which assumes all large-scale motions to
be convecting along x at a common velocity (Uc) throughout the
shear flow [1, 13]. Since the present study focuses on investi-
gating the SS in a ZPG TBL, we choose Uc = 0.75U∞ (where U∞

is the free-stream velocity) based on their convective velocities
estimated in the literature [8].

Large-scale spanwise periodicity

Figure 1 plots the constant energy contours for Γ, as a function
of λx and ∆s scaled with respect to δ, for the high-Reτ experi-
mental dataset. Here, Γ is estimated for both: z+o ≈ 2.6

√
Reτ

(figure 1(c)) and z+o ≈ 0.15Reτ (figure 1(d)), while maintaining
z+r ≈ 15, so that the two plots cumulatively denote scale-specific
coherence of the wall-coherent u-motions across the log-region.
For discussion, +Γ and -Γ contours are interpreted here as being
representative of the statistically averaged +u and -u motions,
respectively and are indicated by solid blue and dashed red con-
tours in the plot. High magnitudes for both +Γ and -Γ are seen
for small spanwise offsets at large λx, which is representative
of a +u superstructure flanked on either sides (along y) by a -u
superstructure, given the flow symmetry in the spanwise direc-
tion. Such an organization is consistent with the observations
reported previously in the literature [6, 11, 8].

This arrangement of alternatively arranged very-large-scale u-
motions can be noted to be existing even at larger spans, ∆s
∼ O(δ), albeit represented by relatively weaker contour levels.
The low contour levels may be attributed to the fact that the co-
herence at such large ∆s is due to the very large scales [2], which
is evident from the positioning of the contours at λx ∼ O(10δ),
corresponding to the SS. The Γ contours in figure 1(c,d), thus,
provide direct empirical evidence in support of +u and -u SS
statistically organized in a spanwise periodic manner across the
log-region of a ZPG TBL. Such a flow organization is brought
out only after consideration of the scale-specific coherence over
very large spatial offsets, which would be otherwise obscured
if the ensemble-averaged correlation coefficient was considered
instead. The present interpretation is further substantiated by
comparing the centre-to-centre distance between the subsequent
peaks (troughs) of +Γ (-Γ) with the dominant spanwise wave-
length (λy ≈ 0.7δ) reported in the literature based on Fourier
analysis [14, 3]. The two values are consistent across the log-
region, as has been highlighted in figure 1(c,d).

Apart from spanwise periodicity, the Γ-contours for the two dif-
ferent z+o also bring out differences in the relatively small-scale
contributions (λx < 2δ), which do not show up in figure 1(d). It
signifies that the tall wall-coherent motions are predominantly
large in size along both the streamwise and spanwise direction.
Figure 1(c), on the other hand, depicts significant coherence in
the relatively small λx-∆s range at the lower bound of the log-
region. Given that the SS are a consequence of the streamwise
concatenation of relatively smaller u-motions [8, 2], we now fo-
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Figure 1. Contours of the coherence function, Γ calculated for the experimental dataset for (c) z+o ≈ 2.6
√

Reτ, z+r ≈ 15 and (d) z+o ≈ 0.15Reτ, z+r ≈
15, as depicted in the respective schematics of the hotwire setup (a,b). Solid blue and dashed red contours respectively indicate Γ contours with values
varying logarithmically in the range (0.05,0.95) and (-0.22,-0.02), in the direction of the arrows shown in (c). The spanwise wavelength estimates (λy)
denoted in (c,d) correspond to the dominant spanwise Fourier mode noted for the ZPG TBL in the literature [14, 3].

cus on the Γ contours at z+o ≈ 2.6
√

Reτ, in this λx-∆s range, to
understand the geometric characteristics of the latter.

Self-similarity of the wall-coherent motions

Figure 2(b,d) depicts Γ contours (with z+r ≈ 15) for both the
experimental and DNS ZPG TBL datasets, with the y-axis plot-
ted on a logarithmic scale to investigate coherence over shorter
∆s/δ. The contours can be noted to be following the linear
trend, λx ∼ ∆s at spanwise widths ∼ O(0.01δ) for both the
datasets, spanning across a decade of Reτ. This trend is repre-
sentative of the self-similar variation of the spanwise widths of
the wall-coherent u-motions with respect to their streamwise ex-
tents (λx), consistent with Townsend’s AEH [15, 4]. This linear
growth, however, ceases at a characteristic width, W ∼ 0.17δ,
in case of both datasets, which can be described as the average
spanwise width of the largest self-similar structure coherent to
the wall. Beyond this point, Γ contours vary only along λx, sug-
gesting these large self-similar motions as the constituent ele-
ments forming the SS, given that their average spanwise widths
are equivalent [1]. This can be confirmed by calculating the
two-point amplitude modulation coefficient, R , to measure the
spanwise extent up to which the wall-coherent SS modulate
[6, 10] the small-scales in the near-wall region. To this end, u-
time series (from the experimental dataset) synchronously ac-
quired at z+o ≈ 2.6

√
Reτ and z+r ≈ 15 is used to compute R

plotted in figure 2(e) following:

R (zo,zr,∆s) =
uC(zo,∆s; t)EC(uI(zr; t−∆t))√

u2
C(zo,∆s)

√
EC(uI(zo,∆s))2

, (2)

where subscripts C and I respectively represent filtered u-
signals comprising the wavelength range corresponding to the
wall-coherent and incoherent scales, while E represents the en-
velope returned by the Hilbert transform [10]. Overbar indicates
the estimate averaged over time, t. The wall-coherent and inco-
herent components of the u-signal are obtained via the linear co-
herence spectrum-based procedure described in [5], conducted

for the same experimental dataset. To get the maximum corre-
lation in equation (2), a time shift ∆t [10] is also applied to the
u-signal at zr to account for the inclination angle of the aver-
aged structure with respect to u(zo,∆s). Interested readers may
refer to [5] for complete information regarding the methodology
employed to find this inclination angle.

As explained by [10], R quantifies the intensity with which the
SS (at zo) modulate the near-wall fluctuations, meaning it would
drop to zero at ∆s/δ extending beyond the average spanwise
width of the SS. Interestingly, R → 0 at the same characteristic
width (W ) where the Γ contours deviate away from the self-
similar trend to grow only along λx in figure 2(b,d). This is evi-
dence that the spanwise width of the largest self-similarly grown
motions is nominally equal to that of the SS, suggesting the for-
mer as the constituent element forming the latter [1, 8, 2]. It
should be noted here, that the self-similarity of the intermediate-
scaled wall-coherent motions is brought out due to the choice
of z+r in the near-wall region (while estimating Γ). For the case
of z+r ≈ z+o , which has been plotted in figure 1(a,c), Γ would
also be influenced by the wall-incoherent motions at zo, owing
to which the contours no longer follow the linear relationship
representative of the self-similarity.

Conclusions

The study investigates the spanwise organization of the ener-
getic large-scale u-motions in a ZPG TBL across a decade of
Reτ. This is facilitated by a scale-specific coherence analysis
of the u-fluctuations synchronously acquired over large wall-
normal and spanwise spacings across the shear flow. The wall-
coherent u-motions in the intermediate-scale range exhibit ge-
ometric self-similarity up to a characteristic δ-scaled spanwise
width (W ), equivalent to that of the SS. A clear evidence of the
spanwise periodicity of the SS, which we speculate are formed
via the streamwise concatenation of the large self-similar mo-
tions, is also reported. The present findings, thus, have direct
ramifications towards future AEH-based conceptual modelling
of the ZPG TBL flow. The organized state of the energetic
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Figure 2. Contours of the coherence function, Γ calculated for the (a,b) DNS and (c,d) experimental datasets for (a,c) z+o ≈ z+r ≈ 2.6
√

Reτ and (b,d) z+o
≈ 2.6

√
Reτ, z+r ≈ 15. Solid blue, dashed red and solid black contours indicate +Γ, –Γ and Γ≈ 0, respectively while the dash-dotted green line represents

the linear relationship, λx ∼ ∆s, representative of the self-similarity. Magnitude of Γ, for both the blue and red contours, increases in the same manner
as shown in figure 1 (c,d). (e) Two-point amplitude modulation coefficient (R ) calculated from the experimental dataset for various ∆s following (2).

large-scale motions, found in the present study, can also facil-
itate flow-control strategies aimed towards manipulating these
motions to achieve drag reduction.
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